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LEmER TO THE EDITOR 

Failure of hyperscaling in one-dimensional long-range bond 
percolation 

G Ord and S G Whittington 
Department of Chemistry, University of Toronto, Toronto MSS IAl, Canada 

Received 14 January 1986 

Abstract. We introduce a result which allows one to deduce the cluster number exponent 
2 - a in long-range one-dimensional percolation problems. This is used to show that in 
the long-range bond problem hyperscaling fails when the bond length exceeds 6. 

One-dimensional percolation is one of the few systems in which one can analytically 
test scaling relations and notions of exponent universality. In higher dimensions the 
evidence for the current picture of exponent relations in percolation (see for example 
the reviews by Stauffer (1979) and Essam (1980)) is largely numerical. Although this 
evidence is generally convincing, it is nonetheless instructive to find simple systems in 
which scaling concepts may be checked precisely. 

In long-range one-dimensional site percolation it was found (Klein et al 1978) that 
the generating function for the mean number of clusters on I', the one-dimensional 
lattice with connections up to L neighbours, was asymptotically a generalised 
homogeneous function of the site vacancy density q = 1 - p ,  and the ghost site density 
h. Although the scaling power of q was found to be L-dependent, the hyperscaling 
relation v = 2 - a, connecting the correlation length exponent v to the cluster number 
exponent a, held for all L. Furthermore the renormalised exponents of Suzuki (1974), 
namely 

?= Y / V  p ^ = P l v  6 = (2- a ) / v  (1) 

where y and ,8 correspond to the mean cluster size and percolation probability 
singularities respectively, were found to be range-independent corresponding to 'weak' 
universality. Recently, the range dependence of the usual exponents has been shown 
to be a direct consequence of the triviality of the percolation threshold ( qc = 0) and 
thus established as a one-dimensional characteristic (Ord and Whittington 1985). 

The bond problem on I' has not been solved analytically for L> 1. However work 
by Zhang et a1 (1983) has shown that the correlation length exponent is given by 
v ( L )  = L(L+ 1112. By analogy with the site problem one might expect that the cluster 
number exponent is given by 2 - (I (L) = L( L+ 1)/2, and that the renormalised 
exponents given in (1) are range-independent. In this letter we shall show that this is 
only the case for L s 6. 

To define the exponent a one usually writes (e.g. Stauffer 1979) 
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or 

lim- log K,( p)/log(p -pcJ = 2 - a 
P - P c  

where the subscript s refers to the ‘singular part’ of the mean number of clusters, K ( p ) .  
This is in principle obtained by subtracting from K ( p )  terms which are analytic in 
( p - p J .  However, if K ( p )  is analytic at p c  we cannot distinguish between the ‘singular 
part’ and the ‘analytic background’. (In what follows we shall assume that K ( p )  is 
analytic in q = 1 - p  in one dimension, as would be the case if 2 - a = L(L+ 1 ) / 2 ,  and 
that 2 - a is defined by ( 2 )  with K,( p )  = K (  p ) .  If a were not an integer hyperscaling 
would clearly fail.) 

For systems in which p c =  1 and K ( p )  is analytic, the exponent 2 -  a is just the 
power of q in the leading term of the high density expansion of K ( p ) .  Thus if KH(q) 
is the high density expansion of K ( p )  about q = 0 we need only find the first term in 
this expansion. To this end we established the following results. 

We define a simple cut set (a) of a connected graph G to be a collection of bonds, 
the removal of which divides G into exactly two connected subgraphs, both of which 
contain at least one bond, whereas the removal of any proper subset of Q results in a 
single component graph. 

Now suppose that G is a connected graph of N bonds, that G has n l > O  distinct 
cut sets of size l, all of which are simple, and that G has no cut sets of size less than 
1. We then have the following result. 

Lemma. If KH(q) is the mean number of clusters per bond on G at bond density 
p = l - q  then 

KH(q)= l / N + ( n f / N ) q ’ + O ( q ’ + ’ ) .  (3) 

To prove this let CL be the total number of distinct configurations on G with b 
bonds and k components. We then have 

k=O i e=(;> 
N - l < b S N  

C: = ( 7 )  - n, 

C: = nl. 

The last three equalities hold since there are no cut sets of size less than 2, and nl 
simple cut sets of size 1. 

Since each distinct configuration with a fixed number of bonds is equally likely, 
given the total number of bonds, we have 

b 
Nb =(number of clusters Ib bonds) = N - ’  1 kCf: 

k = O  

where the factor N - ’  accounts for normalisation per bond and ( . . .) denotes expectation 
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over an ensemble of systems with b occupied bonds. To find KH(q) we note that 

N 
KH(q) = N b  Pr{b bondslq} 

b=O 

where Pr{b bondslq} = ( r ) p b q N - b  is the probability of occupying b bonds given a 
probability p of occupying a single bond. We thus have 

N N  

where the sum over U corresponds to a sum over U vacant bonds. Using (4) and 
rearranging terms this becomes 

Noting that the term in square brackets is O(qo) equation (3) follows. 
We can apply these results to an infinite graph G provided that there exists a 

sequence of graphs { G N }  and a number al > 0 such that nr /  N = a, + O ( N - ' )  as N 
tends to infinity. Then provided the series on the right-hand side of ( 5 )  converges 
when written as a power series in q, the leading term in KH(q) on G is simply alq'. 

For the usual lattices of dimension two or higher the above result is easily obtained 
from an expansion of the first few terms of the 'perimeter' series for K ( p ) ,  namely 

K ( p ) =  p b o b ( q )  
b = l  

where Db(q)  is the 'perimeter' polynomial for clusters of b bonds on L. In this case 
one may obtain the first-order term in &(q) directly to find that I is just the size of 
the smallest perimeter on L. This can be done because in general all finite cut sets on 
L are perimeters of small clusters. In one dimension this is not the case and the above 
lemma simply points out that the leading term of KH( q )  is determined by the smallest 
cut sets, whether perimeters of small clusters or not. An analogous version of the 
above lemma also holds for site problems. For the site problem on IL the smallest 
cut set is a sequence of L consecutive sites, the size of which is less than the size ( 2 L )  
of the smallest cluster perimeter. 

For the bond problem on I L  we note that the size Il (L)  of the perimeter of a bond 
is given by 

I1( L )  = 4 L  - 2 

while the smallest number 12(L) of bonds which have to be removed to create two 
infinite graphs is 

I,( L )  = 1 + 2 + . . . + L = L( L + 1 )/ 2. 
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For L s  6 ,  12( L )  < I ,(  L ) ,  and for L 2  7 ,  12( L )  > I,( L ) .  From the lemma 

2 - a = min( I,( L), I,( L ) ) .  

Hence, for L s 6 ,  v = 2 - a  but v Z 2 - a  for L 3 7 .  
To understand this result one notices that the connectedness length (the analogue 

of the correlation length) is determined by I,(L) since isolating a bond does not 
necessarily destroy long-range connectivity. Hence v is always determined by 12( L ) .  
On the other hand, since isolating a bond changes the number of clusters, a is 
determined by the minimum of I ,  and 12. Thus, for L S 6 there is a single important 
length scale in the critical regime, while for L > 6  there exist at least two important 
length scales and it is this feature which leads to the failure of hyperscaling. 

In summary, long-range bond percolation in one dimension exhibits a crossover 
from a regime in which hyperscaling is obeyed, to a regime in which hyperscaling, 
and consequently weak universality, fail. The reason for the failure is the appearance 
of the perimeter set as the dominating cluster forming process in the critical regime. 
No crossover exists in the site problem on ZL, although it has been noted that the Ising 
problem with n-neighbour interactions exhibits a 5. milar crossover when it becomes 
energetically favourable to flip a single spin (in zero field) as opposed to flipping a 
whole chain segment (Stauffer 1979). 
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